Bands of Privacy Preserving Objectives: Classification of PPDM Strategies
نویسندگان
چکیده
At present, data mining algorithms are largely the domain of governments, large organisations and academia where they provide useful insight into the data. However, without the ability to assure privacy protection, the availability of datasets for research purposes may be impaired. Moreover, privacypreservation is essential if data mining is to be permitted widespread use in government and commercial contexts. Indeed, as data mining algorithms become more widespread, even the datasets currently made available under limited release now may become more restricted. In addition, the ambiguous definitions currently in use hinder the assessment of the quality of the privacy preservation. This paper categorises the protection objectives during the data mining process into bands and then presents a reconceptualization of privacy-preserving data mining algorithms from the viewpoint of these bands. Existing algorithms from eight protection strategies are selected as examples to explain the six bands. Significantly, gaps are revealed in the Privacy Preserving Data Mining literature that indicate areas for future research.
منابع مشابه
Privacy-preserving data mining: A feature set partitioning approach
In privacy-preserving data mining (PPDM), a widely used method for achieving data mining goals while preserving privacy is based on k-anonymity. This method, which protects subject-specific sensitive data by anonymizing it before it is released for data mining, demands that every tuple in the released table should be indistinguishable from no fewer than k subjects. The most common approach for ...
متن کاملClassification via Clustering for Anonym zed Data
Due to the exponential growth of hardware technology particularly in the field of electronic data storage media and processing such data, has raised serious issues related in order to protect the individual privacy like ethical, philosophical and legal. Data mining techniques are employed to ensure the privacy. Privacy Preserving Data Mining (PPDM) techniques aim at protecting the sensitive dat...
متن کاملA Game Theoretic Approach toward Multi-Party Privacy-Preserving Distributed Data Mining
Analysis of privacy-sensitive data in a multi-party environment often assumes that the parties are well-behaved and they abide by the protocols. Parties compute whatever is needed, communicate correctly following the rules, and do not collude with other parties for exposing third party sensitive data. This paper argues that most of these assumptions fall apart in real-life applications of priva...
متن کاملTechnical Report TR-CS_01_07 A Game Theoretic Approach toward Multi-Party Privacy-Preserving Distributed Data Mining
Analysis of privacy-sensitive data in a multi-party environment often assumes that the parties are well-behaved and they abide by the protocols. Parties compute whatever is needed, communicate correctly following the rules, and do not collude with other parties for exposing third party sensitive data. This paper argues that most of these assumptions fall apart in real-life applications of priva...
متن کاملPrivacy Preserving Data Mining
Recent interest in data collection and monitoring using data mining for security and business-related applications has raised privacy. Privacy Preserving Data Mining (PPDM) techniques require data modification to disinfect them from sensitive information or to anonymize them at an uncertainty level. This study uses PPDM with adult dataset to investigate effects of K-anonymization for evaluation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011